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Abstract— Identifying “true causality” is a fundamental chal-
lenge in complex systems research. Widely adopted methods,
like the Granger causality test, capture statistical dependencies
between variables rather than genuine driver-response mecha-
nisms. This critical gap stems from the absence of mathematical
tools that reliably reconstruct underlying system dynamics from
observational time-series data. In this paper, we introduce a
new control-based method for causality discovery through the
behavior-system theory, which represents dynamical systems via
trajectory spaces and has been widely used in data-driven con-
trol. Our core contribution is the Behavior-enabled Causality
test (the BeCaus test), which transforms causality discovery into
solving fictitious control problems. By exploiting the intrinsic
asymmetry between system inputs and outputs, the proposed
method operationalizes our conceptualization of mechanistic
causality: variable X is a cause of Y if X (partially) drives
the evolution of Y . We establish conditions for linear time-
invariant systems to be causality-discoverable, i.e., conditions
for the BeCaus test to distinguish four basic causal structures
(independence, full causality, partial causality, and latent-
common-cause relation). Notably, our approach accommodates
open systems with unobserved inputs. Moreover, an exploratory
case study indicates the new method’s potential extensibility to
nonlinear systems.

I. INTRODUCTION

A. Background and Motivation

Establishing causal relations is both important and chal-
lenging in research on complex systems such as neuro-
science [1], earth system science [2], [3], economics [4],
and social science [5]. For these systems, controlled lab
experiments either are infeasible or do not usually yield
reliable results applicable to real-world scenarios. Therefore,
inferring causality from observational data is fundamentally
important. Ideally, one wishes to extract true causal relations,
i.e., genuine driver-response mechanisms, from collected
time-series data. However, current widely-adopted methods,
such as the regression-based Granger causality test and other
methods based on information theory or machine learning,
are essentially testing statistical dependencies instead of
mechanistic causality. Such limitation is due to the lack of
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theoretical tools that reliably represent underlying dynamical
systems using offline time-series data.

The behavior-system approach in control theory, which has
been widely adopted in data-driven control in recent years,
happens to provide such a tool and makes it possible to
investigate causality in a more intrinsic and straightforward
sense: A variable is a cause of another if the former (par-
tially) drives the dynamic evolution of the latter. Based on
the above conceptualization and the behavior-system theory,
we propose in this paper a new method that discovers
mechanistic causal directions from offline time-series data.
This method leads to mathematically tractable results for
Linear Time Invariant (LTI) systems, including open systems,
i.e., the scenarios when some parts of the system inputs
are unobserved. Moreover, exploratory numerical studies the
potential of behavior-system-based method in discovering
mechanistic causality in nonlinear systems.

B. Literature Review

Regression-based Granger causality test: One prominent
branch of model-based causal inference is Granger causal-
ity [6]. Granger causality originates from bivariate linear
autoregression [7] and evaluates whether the data of one
time series improves the forecast of another. This method
is mathematically rigorized by implementing a statistical
hypothesis test [8]. Granger causality has been further ex-
tended to a graphic approach that visualizes causal relations
among multiple variables by a directed graph: each time
series is treated as a node, and the edges represent Granger-
causal relations between variables [9]–[11]. Despite its wide
application, a major limitation of the Granger causality test is
that it requires the time series to be stationary [12]. Moreover,
Granger causality is more of a statistical concept than what
is normally understood as the true mechanistic causality.

Other model-free methods: Besides Granger causality
tests, alternative frameworks have been proposed based
on information theory [13]–[16] or machine learning [17],
[18]. Information-theoretic measures, such as transfer en-
tropy [13], [14], mutual information [16], [19] and di-
rected information [15], are used to quantify time-directed
information transfer between jointly dependent variables.
These measures are particularly useful in analyzing complex
systems where the conditions for the Granger causality test
do not apply. In particular, transfer entropy is equivalent
to Granger causality when the variables involved follow
a Gaussian distribution [13]. The development of machine
learning provides a new perspective for causal inference. Ap-
proaches like neural networks are applied to learn complex,



nonlinear causal relations in high-dimensional data [20].
However, a major challenge of the aforementioned methods
is the interpretability of the underlying mechanisms that drive
the causal relations. Like Granger causality, causal relations
tested by those methods are essentially certain forms of
statistical relations instead of mechanistic causality.

Behavior-system theory: One promising way to describe
unknown systems via data is rooted in Behavioral systems
theory, which is a fundamental tool in data-driven control.
This theory offers an alternative non-parametric represen-
tation of discrete-time LTI systems [21]–[23]. Unlike tradi-
tional system identification techniques, it defines a system as
a set of trajectories rather than identifying explicit models. A
key result in [21] known as the fundamental lemma, provides
conditions for the existence of the non-parametric represen-
tation and establishes a criterion for determining whether a
trajectory belongs to the system. Since then, a range of new
algorithms has been proposed for system identification, data-
driven simulation, and data-driven (predictive) control [23]–
[25]. For more details, readers are referred to the review
paper [26]. To the best of our knowledge, the behavior-
system theory has not been used for causality discovery.

C. Statement of Contributions

In this paper, we conceptualize causality from a control-
theoretic perspective and propose a method that unveils
mechanistic causality by solving linear equations constructed
from time-series data. Specifically, our contributions are
summarized as follows.

Firstly, we propose a plain and straightforward concep-
tualization of causality: a variable is a cause of another
variable if the former (partially) drives the dynamic evolution
of the latter, i.e., if the former is a control input and the
latter is an output of an underlying dynamical system. Such
conceptualization sets a high criterion for causality discovery
and ensures that the methods aligned with it detect true
mechanistic causal relations rather than statistical correla-
tions.

Secondly, we conduct a rigorous analysis for the scenarios
when the underlying dynamical systems are linear and time-
invariant. We propose a set of tests that, under certain condi-
tions, can distinguish four different types of causal relations
between two vector variables based on their offline time-
series data. The four possible relations are: 1) independence,
i.e., the two variables are collected from different systems
and are mutually independent; 2) unilateral full causality,
i.e., one variable is the only input of the underlying system,
while the other is an output; 3) unilateral partial causality,
i.e., one variable is an input (possibly with the presence of
other unknown inputs) and the other variable is an output;
4) latent-common-cause relation, i.e., these two variables
are both outputs of an underlying system and the input
data is not collected. Particularly, for cases 2) and 3), our
method is able to detect the causal direction, i.e., which one
is the input and which one is the output. We characterize
the conditions for the underlying dynamical systems to be
causality-discoverable and provide a rigorous proof.

Thirdly, an exploratory case study indicates that the widely
studied data-enabled predictive control (DeePC) [25], which
is also based on the behavior-system approach, could be
leveraged to infer causal relations between variables in
nonlinear systems, which indicates potentially broad and
promising applicability of the behavior-system theory in
causality discovery.

D. Organization

The remainder of the paper is organized as follows. In
Section II, we briefly introduce Granger causality and behav-
ioral systems theory. In Section III, we present the proposed
concept of mechanistic causality and formally define the
problem. Section IV contains the main theoretical results
and illustrative examples. We conclude the paper and discuss
future directions in Section VI.

II. NOTATIONS, DEFINITIONS, AND PRELIMINARIES

A. Basic Notations

Let R denote the set of real numbers. We use Z≥0 and
Z>0 to denote the sets of nonnegative and positive integers,
respectively. Denote by 1m ∈ Rm the vector of all ones.
We define the index set T = {1, 2, . . . , T}. Denote by
D = {D(t)}t∈T ⊂ Rq an offline data trajectory of length
T , where D(t) is the value of the trajectory at time t.
The notation col(u, y) denotes vertical concatenation, i.e.,
col(u, y) := [u⊤, y⊤]⊤. For a matrix or vector H , we use
H[k, k+L] to denote the submatrix consisting of rows from
the k-th to the (k + L)-th (including the (k + L)-th row).

B. Granger Causality

The Granger causality test is one of the most popular tools
for inferring causal relation from time series. Essentially,
Granger causality is a statistical concept. To put it simply,
it interprets “causality” as whether one time series helps
improve the prediction of another time series. The Granger
causality test relies on a pre-assumption that the time series
are weakly stationary. Otherwise, the time series need to be
differenced until they are weakly stationary. A T -length time
series {θ(t)}t∈T is weakly stationary if E(θ(t)),Var(θ(t))
are constant for all t ∈ T , and Cov(θ(t), θ(t − k)) depends
only on k but not t. A formal definition of Granger causality
is given below.

Definition 1. ([6, Granger Causality]): Given two weakly
stationary time series θ = {θ(t)}t∈T ⊂ Rm and ψ =

{ψ(t)}t∈T ⊂ Rp, denote by θt and ψt the sets of all the
current and past values of θ and ψ until time t, respectively.
We say that u Granger-causes y if and only if

Var(y(t+ 1)|ut, yt) < Var(y(t+ 1)|yt)

for all t ∈ T , where the variations are estimated using
optimal linear prediction functions.

As implied by the definition above, Granger causality is
based on regression analysis. Therefore, it reflects statistical
dependencies rather than any driver-response mechanism.



C. Behavioral System Theory

The behavioral-system theory represents a dynamical sys-
tem as a set of trajectories in a non-parametric manner. In
this paper, we follow the definitions and notations [23].

Definition 2 (Behavior systems). A dynamical system is a 3-
tuple (Z≥0,W,B) where Z≥0 is the discrete-time axis, W is
a signal space, and B ⊆ WZ≥0 is the set of all the possible
trajectories of the signal, referred to as the behavior.
(i). (Z≥0,W,B) is linear if W is a vector space and B is

a linear subspace of WZ≥0 .
(ii). (Z≥0,W,B) is time invariant if B ⊆ σB where

σ : WZ≥0 → WZ≥0 is the forward time shift defined
by (σw)(t) = w(t+ 1) and σB = {σw | w ∈ B}.

We denote the class of systems (Z≥0,Rq,B) depicted by
Definition 2 as L q . Next, we define trajectories truncated to
a window of length T by a set

BT = {w ∈ (Rq)T | ∃v ∈ B s.t. w(t) = v(t), 1 ≤ t ≤ T}.

For a linear time-invariant system B, given any input/output
partitioning w := col(u, y), the input/state/output (i/s/o)
description is given by

B(A,B,C,D) :=
{

col(u, y) ∈ (Rq)Z≥0

∣∣∣∃x ∈ (Rn)Z≥0

s.t. σx = Ax+Bu, y = Cx+Du
}
.

A minimal representation is referred to as the i/o/s rep-
resentation with the smallest state dimension, and its or-
der is denoted by n(B). Define the dimension of the
input of B by k(B), the dimension of the output by
p(B). We define the observability matrix by Oτ (C,A) :=
col(C,CA, · · · , CAτ−1) and the Toeplitz matrix

Tτ (A,B,C,D) :=


D 0 · · · 0

CB D · · · 0
...

. . .
. . .

...
CAτ−2B · · · CB D

 .

The lag of a system B ∈ L q , denoted by ℓ(B), is defined
as the smallest ℓ ∈ Z>0 such that the observability matrix
Oℓ(A,C) has full rank, i.e., rank(Oℓ(A,C)) = n(B). The
set of all the systems, with q-dimension signal space, order
n, k-dimension input space, and lag l, is denoted by

∂L q,n
k,ℓ = {B ∈ L q|k(B) = k,p(B) = q − k,

n(B) = n, ℓ(B) = ℓ}.

A depth-L Hankel matrix of a time series w ∈ (Rq)T is

HL(w) :=


w(1) · · · w(T − L+ 1)

...
. . .

...

w(L) · · · w(T )

 . (1)

Below, we cite two useful lemmas needed in our analysis.

Lemma 1. ([27, Corollary 19]): Let the T -length offline
data wd be generated by B ∈ ∂L q,n

k,l . Then, imageHL(wd)
equals BL, for L > ℓ if and only if rank(HL(wd) = mL+n.

Lemma 2. ([24, Lemma 1]): Let B ∈ ∂L q,n
k,ℓ and

B(A,B,C,D) be a minimal i/s/o representation. Given an
initial system data col(uini, yini) ∈ BTini , let Tini, Tf ∈ Z>0

with Tini ≥ ℓ and col(uini, uf , yini, yf) ∈ BTini+Tf . Then there
exists a unique xini ∈ Rn such that

yf = OTf(A,C)xini + TTf(A,B,C,D)uf . (2)

III. CONCEPTUALIZATION OF CAUSALITY AND PROBLEM
STATEMENT

A. Conceptualization of Causality

With the behavior-system theory, we are able to conceptu-
alize and test causality in a more straightforward and intrinsic
way. Instead of statistical dependencies, we care about the
genuine causal relations, interpreted as whether one variable
(partially) drives the dynamic evolution of another variable.
This aligns with the classical input-output relation in control
systems and is formalized as follows.

Definition 3. (Mechanistic Causality): A vector variable
θ is mechanistically causal to another vector variable ψ
if there exist functions f and g, a latent state variable x
and possibly a latent input v, such that the joint trajectory
(θ, ψ) satisfies the following dynamical system with the input
u(t) = θ(t) and the output y(t) = ψ(t):{

x(t+ 1) = f(x(t);u(t), v(t)) ,

y(t) = g(x(t);u(t), v(t)) .
(3)

The above definition implicitly assumes that the causal
effect of the input on the output is instant and deterministic,
without any time delay or noise. Causality discovery in
delayed or stochastic systems is of great practical impor-
tance. New mathematical tools are needed to solve these
problems. In this paper, we focus on the prototype problem:
deterministic LTI systems with no time delay.

B. Problem Formulation

In this paper, we study how to discover mechanistic
causality specified in Definition 3, given the time series
of two vector variables generated from an underlying LTI
system B(A,B,C,D) ∈ ∂L q,n

k,l :{
x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(4)

where u(t)= col
(
u1(t), u2(t)

)
, y(t)= col

(
y1(t), y2(t)

)
, and

B =
[
B1 B2

]
, C =

[
C1

C2

]
, D =

[
D11 D12

D21 D22

]
.

All the aforementioned matrices and vectors are of proper
dimensions. The matrices A,B,C,D, the input dimension k,
the output dimension q−k, and the order n are all unknown.

The observation data collected are two T -length time
series θd ∈ (Rm)T and ψd ∈ (Rp)T generated from the
above system, where m and p are the dimensions of the
two variables θ and ψ respectively. The mechanistic causal
relation between θ and ψ are determined by their roles in the
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Fig. 1: Four possible causal relations between variables θ and ψ, and the associated six possible relations. (I) independence;
(II) full causality; (III) partial causality; (IV) latent-common-cause relation.

above underlying system, categorized into the following four
basic causal structures with six possible relations, visually
illustrated by Fig. 1.

(I) Independence: The variables θ and ψ are mutually
independent. This case can be incorporated into our
framework by letting

θ(t) = u1(t), ψ(t) = u2(t)

i.e., they are two free inputs. This is Relation 1.
(II) Full causality: one variable drives the evolution of

another. This structure could be considered as the sce-
narios when θ is the system input and ψ is the system
output, or the other way around. That is,

either θ → ψ, (Relation 2)
i.e., θ(t) = u(t), ψ(t) = y(t),

or ψ → θ, (Relation 3)
i.e., ψ(t) = u(t), θ(t) = y(t).

(III) Partial causality: one of the variables is a system input
and the other is a system output, with the presence of
other latent input not collected in the data. That is, there
exists a latent input v such that

either θ, v → ψ, (Relation 4) i.e.,
θ(t) = u1(t), v(t) = u2(t), ψ(t) = y(t),

or ψ, v → θ, (Relation 5) i.e.,
ψ(t) = u1(t), v(t) = u2(t), θ(t) = y(t).

(IV) Latent-common-cause relation: A common latent input
v drives the evolution of both θ and ψ. That is

v → θ, ψ, (Relation 6)
i.e., v(t) = u(t), θ(t) = y1(t), ψ(t) = y2(t).

Our goal is to distinguish the above six possible relations
based on the collected data wd = col(θd, ψd). Intuitively,
whether this is feasible depends on how the time series are
generated. For an extreme example, if the system input is
constantly zero, then it is impossible to infer causal relations
correctly from the collected data. In this paper, we impose
some requirements for the quality of the time series wd,
referred to as identifiable time series. Such requirements are
widely adopted in data-driven control [22], [25], [28].

Definition 4. (Identifiable Time Series): For a T -length
time series wd = col(θd, ψd) ∈ (Rm+p)T collected from an

unknown discrete-time LTI system B ∈ ∂L q,n
k,ℓ according

to the four causal structures in Fig 1, wd is an identifiable
time series if the observed data (θd, ψd) and the uncollected
latent signal vd satisfy:

(i) If (I), (III), or (IV) occurs, there exists Tini > ℓ such
that rank(HTini+Tf)(wd) = k(Tini + Tf) + n. Here
wd = col(θd, ψd, vd) ∈ BT and vd is the time series of
the hidden variable v, which is not collected and thus
unknown.

(ii) If (II) occurs, there exists Tini > ℓ such that
rank(HTini+Tf)(wd) = k(Tini+Tf)+n, where wd ∈ BT .

Remark 1. The rank condition in Definition 4 is satisfied
with probability one, when the input signal is sampled i.i.d.
from a non-degenerate (i.e., nontrivial) continuous distribu-
tion and the time horizon T is sufficiently large.

IV. CAUSAL INFERENCE FOR DETERMINISTIC LTI
SYSTEMS

In this section, we propose a behavioral-system approach
that transforms causal discovery into solving a fictitious
control problem. Suppose we have collected an identifiable
T -length offline trajectory wd = (θd, ψd) generated from an
underlying system B ∈ ∂L q,n

k,ℓ , i.e., wd ∈ BT . Here the
variables θ and ψ obey one the six possible causal relations
specified in Section III.B. Suppose we know the underlying
system’s lag or an upper bound of it. Pick from wd a piece
of Tini-length trajectory wini = col(θini, ψini) ∈ BTini with
Tini > ℓ. According to Lemma 1, any Tf -length (Tf ∈ N+)
time series (θf , ψf) is a legal trajectory following wini if there
exists g ∈ RT−Tini−Tf+1 such that

Θp

Ψp

Θf

Ψf

 g =


θini

ψini

θf

ψf

 , (5)

where(
Θp

Θf

)
:= HTini+Tf(θd),

(
Ψp

Ψf

)
:= HTini+Tf(ψd) . (6)

We know that the inputs of a system, which are free
variables, should behave intrinsically differently than the
outputs, which are dependent variables. Since equations (5)
and (6) correctly represent the underlying system in a finite-
time horizon, the input-output asymmetry must be reflected



in these equations and can thus be leveraged to distinguish
causal relations. This idea leads to the following Behavior-
enabled Causality test (BeCaus test).

Definition 5 (BeCaus Test). Consider a T -length iden-
tifiable time series wd = col(θd, ψd) ∈ (Rm+p)T . Let
Θp,Θf ,Ψp,Ψf be given by equation (6) and let θini, ψini
be the first Tini-length series of θd, ψd, with Tini > ℓ. Set
Tf = 2 and denote by θf = col(θf(1), θf(2)) ∈ (Rm)2

and ψf = col(ψf(1), ψf(2)) ∈ (Rp)2 the two-step future
trajectory. We test whether the following conditions hold:

1⃝ For any θf , equation (5) yields a unique solution ψf .
2⃝ For any ψf , equation (5) yields a unique solution θf .
3⃝ There exist θf(1), ψf(1) and ψf(2) such that equation

Θp

Ψp

Θf [1,m]

Ψf [1,m]

 g =


θini

ψini

θf(1)

ψf(1)

 , (7)

with g as the unknown variable, admits at least one
solution, while equation (5), with g and θf(2) as the
unknown variables, admits no solution;

4⃝ There exist θf(1), ψf(1) and θf(2) such that equa-
tion (7), with g as the unknown variable, admits at least
one solution, while equation (5), with g and ψf(2) as
the unknown variables, admits no solution.

Based on the results of the above tests, the causal relations
between θ and ψ is determined as follows:

TABLE I: Causal relations inferred by the BeCaus test. Here
✓ means “True”, while ✗ means “False”.

1⃝ 2⃝ 3⃝ 4⃝ Structure Causal relation

✗ ✗ ✗ ✗ (I) Relation 1
(
no relation

)
✓ ✗ ✓ ✗ (II) Relation 2

(
θ → ψ

)
✗ ✓ ✗ ✓ (II) Relation 3

(
ψ → θ

)
✗ ✗ ✓ ✗ (III) Relation 4

(
θ, (v) → ψ

)
✗ ✗ ✗ ✓ (III) Relation 5

(
ψ, (v) → θ

)
✗ ✗ ✓ ✓ (IV) Relation 6

(
(v) → θ, ψ

)

Now we investigate for what systems the BeCaus test with
identifiable time series always leads to correct results. Such
systems are referred to as causality-discoverable systems.
Below, we present sufficient conditions for a system to be
causality-discoverable.

Theorem 3. (Causality-Discoverable Systems): Given any
identifiable time series wd = col(θd, ψd) ∈ (Rm+p)T

generated by an underlying LTI system (4) according to one
of the six scenarios specified in Section III. B, the BeCaus test
in Definition 5 always leads to a correct result if the matrices
C and D in (4) satisfies D11 ̸= 0, D22 ̸= 0, and neither
[C1, D11, D12] nor [C2, D21, D22] has a full row rank;

Proof. We prove this theorem by showing that each of the
six possible causal relations must lead to the corresponding
test results in Table I.

We start with Structure (II), Relation 2 (θ → ψ): The
following fact will be repeatedly used: With any identifiable
time series wd, according to Lemma 1, the set of (θf , ψf)
satisfying equation (5) is equal to the set of (θf , ψf) satisfying

ψf(1) = Cxini +Dθf(1)

ψf(2) = CAxini + CBθf(1) +Dθf(2),
(8)

where xini, according to Lemma 2, is uniquely determined
by wini, since Tini > ℓ. Now we go through each test.

Test 1⃝: In equation (8), any θf ∈ (Rm)2 uniquely
determines a ψf ∈ (Rp)2. Therefore, equation (5) yields a
unique solution ψf for any given θf . That is, the result of
Test 1⃝ must be “✓”.

Test 2⃝: Since neither [C1, D11, D12] nor [C2, D21, D22]
has a full row rank, the matrix D does not have a full row
rank and thus the image space R(D) ⊊ Rp. Given any
xini uniquely determined by wini, let ψf(1) = Cxini + w,
where w ∈ Rp \ {R(D)}. Then there does not exist
any ψf satisfying equation (8), and thereby no ψf satisfies
equation (5). Therefore, Test 2⃝ must return the result “✗”.

Test 3⃝: For any given θf(1) ∈ Rm, ψf(1) = Cxini +
Dθf(1), satisfies equation (8) where xini is uniquely de-
termined by wini. Therefore, (θf(1), ψf(1)) also satisfies
equation (7), which is a part of equation (5). Let

ψf(2) = CAxini + CBθf(1) + w, with w ∈ Rp \ D.

Since R(D) ⊊ Rp, there does not exist any θf(2) satisfying
equation (8). Therefore, no θf(2) satisfies equation (5) either.
Namely, Test 3⃝ must return the result “✓”.

Test 4⃝: Since equation (7) is a part of equation (5) with
the equations for (θf(2), ψf(2) removed, any θf(1) and ψf(1)
satisfying equation (7) also satisfies equation (8). Moreover
any θf(2) ∈ Rm uniquely determines a ψf(2) ∈ Rp in
equation (8). Therefore, given any θf(1) and ψf(1) satisfying
equation (7), and any θf(2) ∈ Rm, there exists a unique ψf(2)
satisfying equation (5). That is, Test 4⃝ returns the result “✗”.

Structure (II), Relation 3 (ψ → θ): The proof is the same
as that for Relation 2, except that θ and ψ are interchanged.

Structures (I), (III) and (IV): One feature these structures
have in common is that there exists a hidden input or
output variable v, which generates a tiem series vd such that
wd = col(θd, ψd, vd) satisfies the identifiable conditions, but
vd is not included in the collected data wd = (θd, ψd). Let
vini be the first Tini-length series of vd. Any future 2-length
trajectory (θf , ψf , vf) following the time series wini satisfies
not only equation (5) but also[

Vp

Vf

]
g =

[
vini

vf

]
(9)

In equations (5) and (9), θf , ψf , vf , and g are the unknown
variables. Since Tini > ℓ, θini, ψini and vini together uniquely
determine xini. However, since the data of vini is not collected
and thus unknown, there could be multiple xini’s compatible
with (θini, ψini). For simplicity of notations, let

D∗1 = col(D11, D21), D∗2 = col(D12, D22),



D1∗ = [D11, D12], D2∗ = [D21, D22].

Structure (III), Relation 4 (θ, (v) → ψ): Accoridng to
Lemma 1, the set of (θf , ψf) satisfying equation (5) is equal
to that satisfying

ψf(1) = Cxini +D∗1θf(1) +D∗2vf(1),

ψf(2) = CAxini + CB1θf(1) + CB2vf(1)

+D∗1θf(2) +D∗2ψf(2),

(10)

where vf is a free variable and xini, by Lemma 2, is
compatible with but not uniquely determined by (θini, ψini),
since vini is unknown. Now we analyze each test.

Test 1⃝: Since D22 ̸= 0 and vf(1) is a free variable,
any given θf(1) alone does not uniquely determine ψf(1)
in equation (10) and thereby does not in equation (5) either.
Therefore, Test 1⃝ returns the result “✗”.

Test 2⃝: Since neither [C1, D1∗] nor [C2, D2∗] has
a full row-rank, neither does [C,D∗1, D∗1]. As a re-
sult, R([C,D∗1, D∗2]) ⊊ Rp. For any ψf(1) ∈ Rp \
R([C,D∗1, D∗2]), there does not exist any θf(1) and ψf(1)
satisfying equation (10), and tehreby no θf(1) satisfies equa-
tion (5). That is, Test 2⃝ must return the result “✗”.

Test 3⃝: For any θf(1) and vf(1), let ψf(1) be given
by equation (10). Then (θf(1), ψf(1)) satisfy equation 7,
which is a part of equation (5). Moreover, since nei-
ther [C1, D11, D12] nor [C2, D21, D22] has a full row-rank,
[C,D∗1, D∗2] does not have a full row-rank either. As a
result, [CA,CB1, CB2, D∗1, D∗2] does not have a full row-
rank and thus R

(
[CA,CB1, CB2, CD∗1, CD∗2]

)
⊊ Rp.

Pick a ψf(2) ∈ Rp \ R
(
[CA,CB1, CB2, CD∗1, CD∗2]

)
.

Then no ψf(2) satisfies equation (10) and thus no ψf(2)
satisfies equation (5). Therefore, Test 3⃝ must return “✓”.

Test 4⃝: We have shown that any pair (θf(1), ψf(1))
given by equation (10) also satisfy equation (5) and thus
equation (7). Moreover, for any such (θf(1), ψf(1)), any
θf(2), and any vf(2), ψf(2) given by equation (5) always
satisfies equation (5) and thus equation (7). That is, Test 4⃝
must return the result “✗”.

Structure (III), Relation 5 (ψ, (v) → θ): The proof is
the same as that for Relation 4 except that the symbols θ
and ψ are interchanged.

Structure (IV), Relation 6 ((v) → θ, ψ): Accoridng to
Lemma 1, the set of (θf , ψf) satisfying equation (5) is equal
to that satisfying

θf(1) = C1xini +D1∗vf(1),

ψf(1) = C2xini +D2∗vf(1),

θf(2) = C1Axini + CBvf(1) +D1∗vf(2),

ψf(2) = C2Axini + CBvf(1) +D2∗vf(2),

(11)

where vf is a free variable and xini, by Lemma 2, is
compatible with but not uniquely determined by (θini, ψini)
since vini is unknown.

Test 1⃝: Since [C1, D1∗] does not have a full row rank,
we have R

(
[C1, D1∗]

)
⊊ Rm. As a result, for any given

θf(1) ∈ Rm \ R
(
[C1, D1∗]

)
, there does not exist any θf(1)

satisfying equation (11) and thereby ψf(1) does not exist

either. Such a pair (θf(1), ψf(1)) will not satisfy equation (5).
Therefore, Test 1⃝ will return the result “✗”.

Test 2⃝: Due to the symmertry between θ and ψ in
Structure IV, the proof for Test 2⃝ is the same as the proof for
Test 1⃝, except that the symbols θ and ψ are interchanged.

Test 3⃝: For any vf(1), by Lemma 1, θf(1) and
ψf(1) given by equation (11) satisfy equation (5). More-
over, since [C1, D1∗] does not have a full row rank,
[C1A,CB,D1∗] does not have a full row rank either, and
thereby R

(
[C1A,CB,D1∗]

)
⊊ Rm. As a result, for any

given θf(2) ∈ Rm \ R
(
[C1A,CB,D1∗]

)
, no vf satisfies

equation (11). Therefore, such (θf(1), ψf(1), θf(2)) is not a
feasible trajectory and does not satisfy equation (5). That is,
Test 1⃝ must return the result “✗”.

Test 4⃝: The proof is the same as the proof for Test 3⃝,
except that the symbols θ and ψ are interchanged.

Structure (I), Relation 1 (θ, ψ → (v)): In this structure,
since θf and ψf are free variables, Test 1⃝- 4⃝ will all return
the result “✗”. This concludes the proof.

■

Remark 2. One might find a “loophole” in the BeCaus
test: Suppose the underlying dynamics is Structure I. Since,
in this case, both θ and ψ are free variables, what if the
underlying system accidentally generates an offline trajectory
(θd, ψd) that coincides with some trajectory generated by
Structure II, III, or IV? In fact, the identifiable-data condition
ensures that, if the offline data (θd, ψd) coincides with
the data generated by Structure II, III or IV and satisfies
their corresponding identifiability condition, then it must not
satisfy the identifiability condition for Structure I and is thus
precluded. To put it in another way, if θ(t) and ψ(t) are
randomly generated according to some i.i.d distributions,
then almost surely the collected data (θd, ψd) almost surely
will not coincide with the data generated by Structure II, III
or IV.

Remark 3. The conditions in Theorem 3 have clear control-
theoretic interpretations. The condition that [C1, D11, D12]
and [C2, D21, D22] are not full row rank implies that each
output is not controllable in one period, while D11, D22 ̸= 0
indicates that the inputs affect outputs without delay. In face,
the proof of Theorem 3 reveals that the required conditions
for each model can be slightly weaker than the unified
condition in Theorem 3. In particular, the conclusions Table I
hold if the following conditions are satisfied:

1) If Structure (II) occurs, D is not full row rank;
2) If Structure (III) occurs, [C,Du, Dv] is not full row

rank, Dv ̸= 0;
3) If Structure (IV) occurs, [C1, Dθ] and [C2, Dψ] are not

full row rank, Dθ, Dψ ̸= 0. Matrices Du, Dv , Dθ, and
Dψ are defined in the proof.

V. COMPARISONS WITH GRANGER CAUSALITY AND
FURTHER DISCUSSIONS

In this section, we compare the proposed BeCaus test with
the Granger causality test and then discussion a tentative
extension of our approach to nonlinear systems.



A. Comparing with Granger causality test via examples

In this subsection, we compare the Granger causality test
with the proposed BeCaus tests via some simple examples
of LTI systems. In the following examples, the state variable
of the underlying systems is set to be two-dimensional, with
the initial state x(0) = [1, 0]⊤. The length of the collected
offline time series is T = 50, all satisfying the identifiable-
data conditions. It turns out that the Granger test returns
incorrect results in all the examples except Example 1, while
the results of the BeCaus test are correct in all the examples.

Example 1 (Structure (I)). In this example, θ and ψ are both
scalar free variables. The entries in the T -length sequence
θd are independently randomly generated from the uniform
distribution on (−1, 1), while the entries of ψd are inde-
pendently randomly generated from the uniform distribution
on (−10, 10). We verify that both θd and ψd are stationary
by using the Augmented Dickey-Fuller (ADF) test. Both the
Granger and BeCaus tests indicate that there is no causal
relation between the two variables; see Fig. 2(A).

Example 2 (Structure (II), θ → ψ). In this example, we
construct the following LTI system:

x(t+ 1) =

[
1 −0.5

0.5 1

]
x(t) +

[
−0.5

2

]
θ(t),

ψ(t) =
[
2 −2

]
x(t).

The offline data θd is independently randomly generated from
a uniform distribution over [0, 1], and the corresponding
output ψd is obtained. Both θd and ψd are stationary time
series, so the direct Granger test is applicable. It turns out
that the BeCaus test returns the correct result, while the
Granger causality test fails, see Fig. 2(B).

Example 3 (Structure (III), θ, (v) → ψ)). In this example,
the underlying system is

x(t+ 1) =

[
1.5 −0.5

0.5 0.8

]
x(t) +

[
−0.5

2

]
θ(t) +

[
1.5

−2

]
v(t),[

ψ1(t)

ψ2(t)

]
=

[
2 −2

1 −1

]
x(t) +

[
2

1

]
θ(t) +

[
2

1

]
v(t).

Here the input series θd and vd are independently ran-
domly generated from uniform distributions on U [−1, 1] and
U [−10, 10] respectively. The corresponding output series ψd
is collected. The Granger test yields an incorrect result that
there is no causal relation between θ and either ψ1 or ψ2.
The result of the BeCaus test is correct, see Fig. 2(C).

Example 4 (Structure (IV), (v) → θ, ψ). In this example,
the underlying system is

x(t+ 1) =

[
0.5 −0.5

0.5 0.5

]
x(t) +

[
−0.5 3

−2 1

][
v1(t)

v2(t)

]
,


θ1(t)

θ2(t)

ψ1(t)

ψ2(t)

 =


1 −2

0 0

2 0.5

0 0

x(t) +

1 0

0 0

1 0

0 0


[
v1(t)

v2(t)

]
.

In this system, θ2(t) and ψ2(t) are constantly zero. Only the
time series of θ1 and ψ1 are collected, denoted by θd and ψd
respectively. The latent inputs v1 and v2 are independently
randomly generated from the uniform distribution on [0, 1].
The Granger test indicates that θ1 and ψ1 causes each other,
which is incorrect. The BeCaus test returns the correct result,
see Fig.2(D).

B. An exploratory case study for nonlinear systems

In this subsection, we briefly explore the potential of
applying the behavioral-system theory to causality discovery
for nonlinear systems. Consider the following underlying
system:

x(t+ 1) = tanh(Ax(t) +Bθ(t), ψ(t) = Cx(t),

where A, B, and C are taken from the simulation setup
in Section V of [29]. Given the offline data (θd, ψd), we
distinguish the causal relations between θ and ψ by solving
the following two fictitious optimal control problems:

min
θf ,ψf ,g

∥ψf(2)− r1m∥2 + ∥θf∥2 + ∥g∥1, (12)

min
θf ,ψf ,g

∥θf(2)− r1p∥2 + ∥ψf∥2 + ∥g∥1, (13)

with the constraints given by equation (5). Here r is a
reference signal set to be a large value, say 1000. Intuitively,
driving the input signal to match a target value after two steps
may cause large variations between consecutive steps, while
the output signal typically exhibits smoother transitions due
to its dependence on previous outputs. Consistent with such
intuition, solving (12) yields ∥ψ⋆(2)∥/∥ψ⋆(1)∥ = 2.432,
while solving (13) gives ∥θ⋆(2)∥/∥θ⋆(1)∥ = 61.425. The
significant difference between these two indices suggests that
θ is more likely to be the input variable. This exploratory
case study indicates that the intrinsic input-output asymmetry
is still preserved in equation (5), which is no longer a
precise representation of the underlying nonlinear dynamics
though. Such asymmetry could still be leveraged for causality
discovery.

VI. CONCLUSION AND DISCUSSION

This paper investigates causal disocvery from time series
using a behavioral systems perspective. We introduce the
concept of mechanistic causality, which captures the under-
lying structural dependencies between variables, rather than
relying solely on predictive statistics. Focusing on determin-
istic linear time-invariant (LTI) systems, we analyze four
representative causal structures and propose the BeCaus test
that distinguish different causal directions without explicit
model identification. It differs from the classic Granger
causality test in the sense of how causality are conceptual-
ized. Moreover, in deterministic LTI systems with identifiable
data and without time delay, the BeCaus test outperforms



(A) Example 1

(B) Example 2

(C) Example 3

(D) Example 4

Fig. 2: Detailed test results for Examples 1 4.

the Granger causality test, since the former is always correct
while the latter often yield spurious results.

To the best of our knowledge, this work is the first to
bridge causal discovery with behavioral systems theory. This
interaction offers a novel perspective on causality and holds
strong potential to enrich existing theoretical frameworks.
Several promising extensions lie beyond the scope of deter-
ministic LTI systems, including noisy, nonlinear, and time-
delay open systems.
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